Abstract

Cytotoxicity of some pesticides is a disadvantage for the Salmonella/microsome assay with regard to the equivalence assessment of pesticide technical grade active ingredients to the original products and detection of low-level impurities. The technical grade active ingredients (TGAIs) of pesticides from certain chemical classes were found to be toxic for Salmonella typhimurium strains. Among the highly cytotoxic compounds were sulfonylureas, which include 20 active ingredients. In addition, this class includes active pharmaceutical ingredients used for the manufacture of antidiabetics drugs.A traditional selection methodology was applied using the cultivation of S. typhimurium TA100 in the presence of high concentrations of thifensulfuronmethyl (TFSM) to obtain a resistant test strain insusceptible to sulfonylurea toxic effect. Two strains resistant not only to sulfonylureas (SFU) but also triazolepyrimidines were received. The first mutant strain (deposited as S. typhimurium VKPM B-14099 in the Russian National Collection of Industrial Microorganisms) demonstrated the TA100 phenotypic characteristics: hisG46, rfa, ΔuvrB-bio, pKM101. The second strain (deposited as S. typhimurium VKPM B-14359) showed the TA1535 phenotypic characteristics and probably lost the R-factor due to the selection using the poor Gm-media with TFSM. Positive controls caused pronounced mutagenic effects (±S9) in both strains, consequently the mutants did not lose the ability to respond to induction of the reverse gene mutations. The maximum non-cytotoxic concentrations of SFUs and triazole-pyrimidines for the Ames test strains did not exceed 0.05–0.125 mg/plate, while no evidence of cytotoxicity was observed for the mutants up to 5.0 mg/plate. Electron microscopy of the ultrathin sections of Salmonella cells grown with and without TFSM showed an obvious difference in the structure of the cell wall and cytoplasm in mutant and parental cultures. The concurrent resistance both to SFU and triazolepyrimidines was assumed to be mediated by the same mechanism of action of the pesticides from these classes – inhibition of acetohydroxyacid synthase. To confirm this hypothesis, the tests in the presence of branched-chain amino acids were carried out. The enrichment of agar with isoleucine prevented the toxic effects of SFU and triazolepyrimidines for all Ames test strains used in the study, while strong cytotoxicity was observed in the presence of valine and leucine.Considering the tolerance of strains both to SFU and triazolpyrimidines and the results with branched-chain amino acids, the modification of target acetohydroxyacid synthase was supposed the key to the acquired resistance. The new strains resistant to sulfonylureas and triazole-pyrimidines expands the possibilities to reveal mutagenic impurities that may occur in TGAIs in small amounts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call