Abstract

Salmonella enterica serovar Typhimurium (hereafter referred to as Salmonella), a virulent pathogen, is known to induce host‑cell death. Using reverse transcription‑quantitative polymerase chain reaction, a 28‑fold increase of microRNA (miR)‑155 expression in RAW 264.7 macrophages was observed following infection with Salmonella for 24h. This miR‑155 upregulation increased macrophage cell death by up to 40% in 48h following infection. Western blot analysis revealed that receptor interacting protein 1 (RIP1)and3 (RIP3) were increased at 18h following miR‑155 transfection to macrophages, similar to Salmonella infection. In addition, inhibition of RIP1 by pre‑incubating macrophages with necrostatin‑1, a RIP1 specific inhibitor, increased the viability of Salmonella‑infected cells and miR‑155‑transfected cells by up to 20%. The cleavage of poly (adenosine diphosphate‑ribose) polymerase‑1 (PARP‑1) was also enhanced by miR‑155 induction upon Salmonella infection. Therefore, it was suggested that RIP1/3‑induced necroptosis and PARP‑1‑mediated necrosis caused by miR‑155 induction may represent distinct routes of programmed necrotic cell death of Salmonella‑infected macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.