Abstract

Salmonella enterica serovar Typhimurium (S Typhimurium) relies upon the inner membrane protein PbgA to enhance outer membrane (OM) integrity and promote virulence in mice. The PbgA transmembrane domain (residues 1 to 190) is essential for viability, while the periplasmic domain (residues 191 to 586) is dispensable. Residues within the basic region (residues 191 to 245) bind acidic phosphates on polar phospholipids, like for cardiolipins, and are necessary for salmonella OM integrity. S Typhimurium bacteria increase their OM cardiolipin concentrations during activation of the PhoPQ regulators. The mechanism involves PbgA's periplasmic globular region (residues 245 to 586), but the biological role of increasing cardiolipins on the surface is not understood. Nonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB (also known as yciM), ftsH, and lpxC, variably suppressed the defects in OM integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191-586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted). Compared to the OMs of the wild-type salmonellae, the OMs of the pbgA mutants had increased levels of lipid A-core molecules, cardiolipins, and phosphatidylethanolamines and decreased levels of specific phospholipids with cyclopropanated fatty acids. Complementation and substitution mutations in LapB and LpxC generally restored the phospholipid and LPS assembly defects for the pbgA mutants. During bacteremia, mice infected with the pbgA mutants survived and cleared the bacteria, while animals infected with wild-type salmonellae succumbed within 1 week. Remarkably, wild-type mice survived asymptomatically with pbgA-lpxC salmonellae in their livers and spleens for months, but Toll-like receptor 4-deficient animals succumbed to these infections within roughly 1 week. In summary, S Typhimurium uses PbgA to influence LPS assembly during stress in order to survive, adapt, and proliferate within the host environment.

Highlights

  • IntroductionNonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB ( known as yciM), ftsH, and lpxC, variably suppressed the defects in outer membrane (OM) integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191–586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted)

  • RcsF initiates a phosphorelay at the inner membrane (IM) that activates the wza operon, which encodes the synthesis and export proteins for the production of the colonic acid exopolysaccharide capsule [57]

  • Typhimurium LPS integrity, we studied pbgA mutants in which the nonessential periplasmic domain of the PbgA protein was deleted but in which the essential transmembrane domain was retained [50, 52]

Read more

Summary

Introduction

Nonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB ( known as yciM), ftsH, and lpxC, variably suppressed the defects in OM integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191–586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted). Compared to the OMs of the wild-type salmonellae, the OMs of the pbgA mutants had increased levels of lipid A-core molecules, cardiolipins, and phosphatidylethanolamines and decreased levels of specific phospholipids with cyclopropanated fatty acids. Mice infected with the pbgA mutants survived and cleared the bacteria, while animals infected with wild-type salmonellae succumbed within 1 week. The OM is asymmetric, surrounds the periplasm, and consists of inner leaflet phospholipids and outer leaflet LPS molecules (Fig. 1) [6, 7]. Lipid asymmetry and LPS biochemistry provide chemical-physical barrier properties to the OM that are critical for Gram-negative bacteria to resist antibiotics and withstand immune systems [9, 10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call