Abstract

Salmonella Enteritidis (SE) is one of the most common culprits of foodborne disease in humans due to its horizontal transmission from infected animals to humans. The development of a safe vaccine against Salmonella would be important for both farm animals and humans concerning disease containment. The SE ghosts carrying FliC were genetically constructed using a special ghost plasmid pJHL184 that co-expressed FliC and the phage lysis gene E. These SE ghosts were characterized by ghost generation efficacy by increasing the culture temperature to “42 °C” in the absence of L-arabinose. This temperature change led to an ghost generation with almost complete lysis of the SE host strain in 48 hs. The expression of FliC was confirmed by Western blot analysis. Also, indirect ELISA was used to prove FliC specific antibody generation in immunized mice. The parenteral adjuvant effect of the FliC antigen was demonstrated by immunizing mice with pJHL184::flC, pJHL184 alone, or PBS alone. The mice were intramuscularly immunized at six weeks of age (n = 8) and boosted after three weeks of primary inoculation. A total of 32 mice were equally divided into four groups. Each group was treated with pJHL-ghosts alone, ghost surface displaying FliC adjuvant, and compared to the PBS and naïve control groups. The immunized mice demonstrated greater IgG and IgA antibody responses than did the PBS control group. Furthermore, the addition of the ghosts to the FliC led to a significant increase in both the humoral and cell-mediated immune responses compared to those in the ghost alone group. Besides, the in vitro antigen uptake and presentation studies revealed efficient antigen presentation on the mouse macrophage cell surfaces. This finding further corroborated the potential efficacy of immune stimulation by SE ghosts. After the virulent challenge, we observed a significant reduction in the bacterial load in the spleen and liver tissues in SE ghosts surface, displaying FliC adjuvant. Our results demonstrate a safe and effective strategy to prevent salmonellosis. They also suggest that the surface expression of flagellin (FliC) significantly enhances antigen-specific humoral and cell-mediated immune responses. This FliC expression can also enhance the protective efficacy of the bacterial ghosts-based vaccine against virulent challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call