Abstract

Some strains of Salmonella enterica serovar Dublin are Vi antigen-positive. S. enterica serovar Typhi uses Type IVB pili, encoded adjacent to the viaB locus required for Vi antigen synthesis, to facilitate both eukaryotic cell attachment and bacterial self-association under conditions that favour DNA supercoiling. These pilus-mediated events may be important in typhoid fever pathogenesis. A survey of 17 isolates of S. enterica serovar Dublin showed that all strains which carried the viaB region also carried a serovar Typhi-like Type IVB pil operon, and all serovar Dublin Vi antigen-negative isolates lacked the pil operon. The pil operon was completely sequenced from one of the Vi + serovar Dublin strains, and was almost identical (4 nt changes; 3 aa changes, in over 10 kb) to that of serovar Typhi. A pilS mutant of one serovar Dublin strain was constructed, and shown to invade cultured human intestinal INT407 cells to an extent only 20% that of the wild-type parent. Purified prePilS protein inhibited INT407 cell entry by serovar Dublin. The wild-type serovar Dublin strain, but not the pilS mutant, self-associated. The data suggest that the serovar Dublin Type IVB pil operon may increase the human-invasiveness of serovar Dublin, compared to pil-free strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call