Abstract

Salivary agglutinin (SAG) is a high molecular mass glycoprotein (340 kDa) that plays important roles in innate immunity. SAG has been found to specifically inhibit HIV-1 infectivity and to bind to virus through the envelope protein gp120. Although SAG binds to gp120 of the virus, the exact nature of this binding has not been characterized. Using surface plasmon resonance technology, we have found that SAG interacts with recombinant envelopes derived from diverse HIV-1 isolates with K(D) values ranging from 10(-7) to 10(-10) M, comparable to gp120-sCD4 binding. Furthermore, SAG binding to gp120 is Ca(2+) dependent. sCD4 prebound to gp120 failed to abrogate SAG binding, suggesting a distinct mechanism for SAG inhibition of HIV-1 infectivity. Inhibition by monoclonal antibodies specific for carbohydrates also implicates the involvement of carbohydrates in the interaction between SAG and gp120. These results argue that the anti-HIV-1 activity of SAG is due to carbohydrate-mediated binding to gp120. A demonstration that SAG is related to lung scavenger receptor, gp-340, further suggests the roles of SAG in preventing pathogen invasion at the entry portal and raises its potential as an anti-HIV-1 drug candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.