Abstract

Relative salinity tolerance of 32 perennial (Lolium perenne L.) and three intermediate (Lolium ×hybridum Hausskn.) ryegrass turf cultivars was determined by measuring turf leaf clipping dry weight, root weight, rooting depth, and percent green leaf canopy area relative to control (non-salinized) plants. After gradual acclimation, grasses were exposed to moderate salinity stress (6 dS·m−1) for 6 weeks through solution culture in a controlled environment greenhouse. Shoot parameters were highly correlated, being mutually effective predictors of salinity tolerance. After 6 weeks of salinity stress, percent green leaf canopy area (GL) was correlated with relative (to control) final week leaf clipping weight (LWREL) (r = 0.90) and with linear slope of decline of weekly leaf clipping weight over the 6-week exposure to salinity (LWSLOPE) (r = 0.66). Rooting parameters root dry weight (RW) and rooting depth (RD), although significantly correlated with all shoot parameters, were only moderately effective in predicting relative salinity tolerance. ‘Paragon’ was the most salt-tolerant as indicated by all parameters. Other salt-tolerant cultivars included Divine and Williamsburg. Intermediate ryegrass cultivars (Froghair, Midway, and Transist) were invariably found within the most salt-sensitive category for all parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call