Abstract

When oceanic rainfall occurs, it creates a vertical salinity profile that is fresher at the surface. This freshwater lens is mixed downward by turbulent diffusion, dissipating over a few hours until the upper layer (1–5 m depth) becomes well mixed. Thus, there will be a transient bias between the in situ bulk salinity and the satellite-measured sea surface salinity (SSS) (representative of the first centimeter of the ocean depth). Based on measurements of Aquarius (AQ) SSS under rainy conditions, a model called rain impact model (RIM) was developed to assess the SSS variations due to the accumulation of rainfall prior to the time of the AQ observation. RIM uses ocean surface salinities from hybrid coordinate ocean model and the NOAA global precipitation product, climate prediction center morphing, to estimate changes in the near-surface salinity profile. Also, the RIM analysis has been applied to soil moisture and ocean salinity with similar results observed. The Soil Moisture Active Passive (SMAP) satellite carries an L -band radiometer, which measures SSS over a swath of 1000 km at 40-km resolution. SMAP can extend AQ salinity data record with improved temporal/spatial sampling. This paper describes RIM that simulates the effects of rain accumulation on SMAP SSS, showing good correlation between the model and the observed SSS values. Given the better resolution of SMAP, the goal of this paper is to continue the previous analysis of AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call