Abstract

The objectives of this study were to characterize the electric conductivity (EC), total dissolved salts (TDS), highly soluble salts (HSS), less soluble salts (LSS), cations (Na+, K+, Ca++ and Mg++) and anions (Cl-, NO-3, SO--4, PO---4) profiles in non-agricultural coastal land in Gaza Strip and to evaluate the effect of trees in salinity. Six locations were selected randomly in coastal zone in Gaza Strip and used for soil profile digging. Soil samples were collected from different layers between 0 and 150cm depth, air dried and kept in plastic bags at lab temperature. Ten grams of soil were mixed with 25mL distilled water and kept under shaking for 24h, then EC, pH and TDS were determined. Then additional 25ml distilled water was added to each bottle and kept for additional 24h of shaking. EC and TDS were determined again. Then the soil filtrates were collected by centrifugation and used to determine cations and anions. Results showed that concentrations of TDS, HSS and LSS were higher at the top soil layer than at deeper soil layers. Concentrations of cations and anions have similar trends to TDS, HSS and LSS. Behavior of cations and anions in the soil profiles under trees were different from those in open field. Comparing between the data of soil profiles under trees (site 2 and 5) and those in the open field (sites 1, 3, 4 and 6) showed slight effects on availability of cations and anions. Strong correlations were found between cations and anions in soil profiles under trees, and week correlations were found in soil profile in open field. In conclusion the coastal soil profiles are characterized with elevated levels of TDS, HSS and LSS in the top soil layers. Accumulations of salts were more pronounced in top soil layers. These properties suggest high potential damage to the ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call