Abstract
Salt stress triggers a simultaneous transcriptional repression and aquaporin internalization to modify root cell water conductivity. Plasma membrane intrinsic proteins (PIPs) are involved in the adjustment of plant water balance in response to changing environmental conditions. In this study, Arabidopsis wild-type (Col-0) and transgenic lines overexpressing PIP2;7 were used to investigate and compare their response to salt stress. Hydraulic conductivity measurements using a high-pressure flowmeter (HPFM) revealed that overexpression of PIP2;7 induced a sixfold increase in root hydraulic conductivity of four week-old Arabidopsis thaliana plants compared to WT. Exposure to a high salt stress (150mM NaCl) triggered a rapid repression of overall aquaporin activity in both genotypes. Response to salt stress was also investigated in 8day-old seedlings. Exposure to salt led to a repression of PIP2;7 promoter activity and a significant decrease in PIP2;7 mRNA abundance within 2h. Concomitantly, a rapid internalization of fluorescently-tagged PIP2;7 proteins was observed but removal from the cell membrane was not accompanied by further degradation of the protein within 4h of exposure to salinity stress. These data suggest that PIP transcriptional repression and channel internalization act in concert during salt stress conditions to modulate aquaporin activity, thereby significantly altering the plant hydraulic parameters in the short term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.