Abstract

ABSTRACT The effect of salinity (1.5, 3.0, 4.5, or 6.0 dS m− 1) on ion concentrations [magnesium (Mg), calcium (Ca), potassium (K), sodium (Na), and chloride (Cl)] of one-year-old ‘Hass’ avocado (Persea americana Mill.) trees on one of three rootstocks [‘Duke 7’ (D7), ‘Toro Canyon’ (TC), or ‘Thomas’ (TH)] was investigated. Concentrations of Mg decreased in roots, stems, and older leaves with increasing substrate salinity. Salinity had no effect on Ca concentration of the trees. Potassium concentrations decreased in roots of all trees and stems of trees on TH. Potassium concentrations either remained unchanged or increased at salinity levels of 3.0 dS m− 1 and above in leaves and buds of all trees. Sodium increased in roots and woody organs in trees on all rootstocks. Leaf Na concentrations increased with salinity in trees on D7 and TH, but not TC. Chloride increased in all organs of all trees with increasing salinity, but to the greatest extent in trees on TH and to the least extent in trees on TC. At high substrate salinity concentrations, leaves of trees on TH rootstock had the highest leaf concentrations of Na and Cl, and the highest Na:K ratios. Sodium and chloride concentrations were correlated with necrosis in older leaves of TH, but less so in leaves of trees on TC or D7. Based on percent necrosis in older leaves with increased salinity, trees on TH performed poorest, whereas trees on TC exhibited the greatest salt tolerance. Leaf necrosis was consistently observed at Cl concentrations of 4 mg g− 1 or more, and at Na:K ratios of 0.01 or more in older leaves. Chloride concentration and Na:K ratio in older leaves appears to be a useful marker for salinity tolerance screening in avocado rootstocks. The relative tolerance of the various rootstocks appeared to be due primarily to their ability to exclude Na and Cl from the leaves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.