Abstract

The primarily freshwater genus Chara is comprised of many species that exhibit a wide range of salinity tolerance. The range of salt tolerance provides a good platform for investigating the role of transport mechanisms in response to salt stress, and the close evolutionary relationship between Charophytes and land plants can provide broader insights. We investigated the response to salt stress of previously identified transport mechanisms in two species of Chara, Chara longifolia (salt-tolerant), and Chara australis (salt-sensitive): a cation transporter (HKT), a Na+ /H+ antiport (NHX), H+ -ATPase (AHA), and a Na+ -ATPase (ENA). The presence of these candidate genes has been confirmed in both species of Chara, with the exception of the Na+ -ATPase, which is present only in salt-tolerant Charalongifolia. Time-course Illumina transcriptomes were created using RNA from multiple time points (0, 6, 12, 24 and 48h) after freshwater cultures for each species were exposed to salt stress. These transcriptomes verified our hypotheses of these mechanisms conferring salt tolerance in the two species examined and also aided in identification of specific transcripts representing our genes of interest in both species. The expression of these transcripts was validated through use of qPCR, in a similar experimental set-up used for the RNAseq data described above. The RNAseq and qPCR data showed significant changes of expression mechanisms in C.longifolia (respectively), a down-regulation of HKT and a substantial up-regulation of ENA. Significant responses to salt stress in salt-sensitive C.australis show up-regulation of NHX and AHA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.