Abstract
AbstractDue to the flocculation process, suspended mud aggregates carried by rivers to the coastal ocean are thought to undergo changes in size and shape in response to environmental drivers such as turbulence, sediment concentration, organic matter (OM), and salinity. Some have assumed that salt is necessary for floc formation, and that mud, therefore, reaches the estuary unflocculated. Yet mud flocs exist in freshwater systems long before the estuarine zone, likely due to the presence of OM acting as a floc‐promoting binder. Therefore, it is important to consider how salinity affects flocculation, if at all, in the presence of OM. Here, we used experiments to examine the flocculation of a natural mud with and without OM. Results showed that the rate of floc growth and equilibrium size both increase with salinity regardless of the presence or absence of OM. However, the response of both to salinity was stronger when OM was present. In deionized water, natural sediment with OM was seen to produce large flocs. However, the size distribution of the suspension tended to be bimodal. With the addition of salt, increasing amounts of unflocculated material became bound within flocs, producing a more unimodal size distribution. Here, the enhancing effects of salt were noticeable at even 0.5 ppt, and increases in salinity past 3–5 ppt only marginally increased the floc growth rate and final size. Data from the experiment were used to develop a salinity‐dependent model to account for changes in floc growth rate and equilibrium size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.