Abstract

Despite salmon farmers suffering the worst damage from a harmful algal bloom in Chile’s history (US$800M) due to a massive outbreak of the dictyochophyte Pseudochattonella verruculosa in 2016 (∼7000–20,000 cells ml−1), the effect of environmental drivers and the potency of lytic toxins produced by the local clones of this species remain still largely unexplored. Based on the drastic oceanographic anomalies observed in the Chilean fjords during the 2016-El Nino Godzilla event, the role of salinity (15 to 35 psu) on Pseudochattonella cell growth and cytotoxicity was studied by culturing, scanning electron microscopy (SEM) and using a rainbow trout cell line RTgill-W1 assay to define: (1) vegetative growth rates, (2) cell taxonomy, (3) ichthyotoxicity of monoclonal cultures at 25 and 35 psu in salinity, (4) differences in toxicity of lysed cells and supernatant at different cell concentrations (from 10 to 100,000 cells ml−1), and (5) temporal stability of lytic compounds. This study formally confirms the presence of P. verruculosa in Chilean waters using the large subunit (LSU) of the nuclear ribosomal RNA gene. The Chilean P. verruculosa ARC498 strain showed maximum cell densities at 30 psu (max. 84,333 ± 4,833 cells ml−1) and maximum growth rates (μmax) at 20 psu (1.44 cells d−1). Cultures at 15 psu showed suppressed maximum cell density (max. 269 ± 71 cell ml−1) but high μmax were recorded at the beginning of the exponential growth (1.31 cells d−1). No significant differences were observed between lysed cells and supernatant treatments in the two salinity levels, suggesting that the most lytic portion is released into the cell-free media instead of remaining cell bound. Cytotoxicity was correlated to cell abundance, reducing gill cell viability down to 80 and 65% compared to controls at 10,000 and 100,000 cells ml−1, respectively. Unexpectedly, lytic compounds from P. verruculosa ARC498 at 35 psu showed to be less toxic than cultures at 25, where a noticeable presence of peripheral mucocysts were observed by SEM. Lytic compounds from in vitro experiments are weakly toxic even at high cell concentrations, highly unstable and rapidly degraded in the light after 5 days of storage at 15∘C. Our results point to the important effect of salinity on growth and ichthyotoxic potency of Pseudochattonella species and highlight the need for a deeper insight into the role of mucocysts in fish gill damage, which would provide a greater understanding as to the harmful modes of action of this species.

Highlights

  • Harmful Algal Blooms (HABs) have become an important threat for coastal aquaculture in the last decades (Hallegraeff et al, 2017)

  • The 250 bp partial large subunit (LSU) rDNA sequence obtained from P. verruculosa ARC498 was identical to six sequences attributed to P. verruculosa (AB217643.1, AM850226.1, AM850225.1, AM850224.1, AB217642.1, and AM040504.1), and differed from sequences of Pseudochattonella farcimen by 4–5 substitutions

  • These results resolved the Chilean P. verruculosa strain (ARC498) within a clade with others P. verruculosa strains from Japan and New Zealand in agreement with Chang et al (2014) for the same gene

Read more

Summary

Introduction

Harmful Algal Blooms (HABs) have become an important threat for coastal aquaculture in the last decades (Hallegraeff et al, 2017). Among the ∼80 species described as having the capacity to produce toxins, flagellates are recognized as the most harmful group (Wright and Cembella, 1998; Hallegraeff, 2003). Blooms of Pseudochattonella species have caused several fish kills in Northern Europe (Lu and Goebel, 2000; Naustvoll et al, 2002; Edvardsen et al, 2007; Riisberg and Edvardsen, 2008), Japan (Yamamoto and Tanaka, 1990; Baba et al, 1995; Imai et al, 1998), New Zealand (MacKenzie et al, 2011; Chang et al, 2014) and Chile (Mardones et al, 2012; Clément et al, 2016; León-Muñoz et al, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call