Abstract
N2 -fixing heterocytous cyanobacteria are considered to play a minor role in sustaining coastal microbial mat communities developing under normal marine to hypersaline conditions. Here, we investigated microbial mats growing under different salinities from freshwater mats of Giblin River (Tasmania) to metahaline and hypersaline mats of Shark Bay (Western Australia). Analyses of genetic (rRNA and mRNA) and biological markers (heterocyte glycolipids) revealed an unexpectedly large diversity of heterocytous cyanobacteria in all the studied microbial mat communities. It was observed that the taxonomic distribution as well as abundance of cyanobacteria is strongly affected by salinity. Low salinity favoured the presence of heterocytous cyanobacteria in freshwater mats, while mats thriving in higher salinities mainly supported the growth unicellular and filamentous non-heterocytous genera. However, even though mRNA transcripts derived from heterocytous cyanobacteria were lower in Shark Bay (<6%) microbial mats, functional analyses revealed that these diazotrophs were transcribing a substantial proportion of the genes involved in biofilm formation and nitrogen fixation. Overall, our data reveal an unexpectedly high diversity of heterocytous cyanobacteria (e.g. Calothrix, Scytonema, Nodularia, Gloeotrichia, Stigonema, Fischerella and Chlorogloeopsis) that had yet to be described in metahaline and hypersaline microbial mats from Shark Bay and that they play a vital role in sustaining the ecosystem functioning of coastal-marine microbial mat systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.