Abstract

Current estimations of nitrogen biogeochemical cycling and N2O emissions in global lakes as well as predictions of their future changes are overrepresented by freshwater datasets, while less consideration is given to widespread saline lakes with different salinity (representing salinization or desalinization). Here, we show that N2O production by denitrification is the main process of reactive nitrogen (Nr, the general abbreviations of NH4+-N, NO2−-N and NO3−-N) removal in hypersaline lake sediments (e.g. Lake Chaka). The integration of our field measurements and literature data shows that in response to natural salinity decrease, potential Nr removal increases while N2O production decreases. Furthermore, denitrification-induced N2 production exhibits higher salinity sensitivity than denitrification-induced N2O production, suggesting that the contribution of N2O to Nr removal decreases with decreasing salinity. This field-investigation-based salinity response model of Nr removal indicates that under global climate change, saline lakes in the process of salinization or desalination may have distinct Nr removal and climate feedback effects: salinized lakes tend to generate a positive climate feedback, while desalinated lakes show a negative feedback. Therefore, salinity change should be considered as an important factor in assessing future trend of N2O emissions from lakes under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.