Abstract

Dimethylsulfoniopropionate (DMSP) is an important carbon and sulfur source to marine bacterial communities and the main precursor of dimethylsulfide (DMS), a gas that influences atmospheric chemistry and potentially the global climate. In nature, bacterial DMSP catabolism can yield different proportions of DMS and methanethiol (MeSH), but relatively little is known about the factors controlling the pathways of bacterial degradation that select between their formation (cleavage vs. demethiolation). In this study, we carried out experiments to evaluate the influence of salinity on the routes of DMSP catabolism in Ruegeria pomeroyi DSS-3. We monitored DMS and MeSH accumulation in cell suspensions grown in a range of salinities (10, 20, 30 ppt) and with different DMSP amendments (0, 50, 500 µM). Significantly higher concentrations of DMS accumulated in low salinity treatments (10 ppt; P < 0.001), in both Marine Basal Medium (MBM) and half-strength Yeast Tryptone Sea Salts (1/2 YTSS) media. Results showed a 47.1% and 87.5% decrease of DMS accumulation, from salinity 10 to 20 ppt, in MBM and 1/2 YTSS media, respectively. On the other hand, MeSH showed enhanced accumulations at higher salinities (20, 30 ppt), with a 90.6% increase of MeSH accumulation from the 20 ppt to the 30 ppt salinity treatments. Our results with R. pomeroyi DSS-3 in culture are in agreement with previous results from estuarine sediments and demonstrate that salinity can modulate selection of the DMSP enzymatic degradation routes, with a consequent potential impact on DMS and MeSH liberation into the atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.