Abstract

The response of bacterioplankton structure to salinity level in coastal lakes (n = 9) along the southern Baltic Sea coastline was studied. In terms of mean salinity levels (0.2–5.2 PSU), the lakes represented freshwater, transitional, and brackish types. Results showed that salinity determines the spatial and seasonal distribution patterns of microorganisms in costal lakes. Increased salinity contributed to a significant decline in total bacterial numbers (TBN). The TBN was lowest in brackish lakes in autumn (4 × 106 cells/mL) and highest in freshwater lakes in summer (7.11 × 106 cells/mL). The groups of Proteobacteria are appropriate bioindicators in any classifications of coastal ecosystems, particularly at low-haline stress. Alpha- and Gamma- subclasses of Proteobacteria are identifiers for brackish habitats, while Betaproteobacteria, due to their intolerance to haline stress, prefer freshwater habitats. Counts of euryhaline Actinobacteria, the dominant group of bacterioplankton (31.8%), decreased significantly with increased salinity. Actinobacteria and Deltaproteobacteria were identifiers of transitional lakes. Cytophaga-Flavobacteria showed affinity with freshwater ecosystems, but this relation was not statistically significant (p > 0.05). The bacteria groups correlated with other physico-chemical parameters of water, such as oxygenation (Actinobacteria) or organic carbon (Betaproteobacteria, Deltaproteobacteria). The impact of hydrological connectivity and salt-water interference on the microbiota structure and biogeochemistry of coastal waters should be considered in the assessment of the ecological status of coastal lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call