Abstract

The benthic stages of Dreissenidae and Mytilidae may be dispersed over long distances while attached to ship hulls. Alternatively, larvae may be transported by water currents and in the ballast and bilge water of ships and vessels. To gain insight into dispersal potential and habitat suitability, survival of the benthic stages of two invasive dreissenid species (Dreissena polymorpha and Mytilopsis leucophaeata) and one mytilid species (Mytilus edulis) chosen based on their occurrence in fresh, brackish and sea water, respectively, were tested in relation to salinity. They were exposed to various salinities in mesocosms during three long-term experiments at outdoor temperatures. Mussel survival was studied without prior acclimation, reflecting conditions experienced when attached to ship hulls while travelling along a salinity gradient from fresh or brackish water to sea water, or vice versa. Initially, mussels react to salinity shock by temporarily closing their valves, suspending ventilation and feeding. However, this cannot be maintained for long periods and adaptation to higher salinity must eventually occur. Bivalve survival was monitored till the last specimen of a test cohort died. The results of the experiments allowed us to distinguish favorable (f.: high tolerance) and unfavorable (u.: no or low tolerance) salinity ranges in practical salinity units (PSU) for each species, viz. for D. polymorpha 0.2–6.0 PSU (f.), 7.0–30.0 PSU (u.), for M. leucophaeata 0.2–17.5 PSU (f.), 20.0–30.0 PSU (u.) and for M. edulis 10.5–36.0 PSU (f.), 0.2–9.0 and 40 PSU (u.). At the unfavorable salinities, all mussels died within 14 days of initial exposure with the exception of M. edulis (23–30 days). The maximum duration of survival of single specimens of D. polymorpha was 318 days at a salinity of 3.2 PSU, of M. leucophaeata 781 days at 15.0 PSU and of M. edulis 1052 days at 15.0 PSU. The number of days survived was compared with the duration of actual ship voyages to estimate the real world survival potentials of species dependent of salinity changes, travel distances and durations. The conclusion is that salinity shocks during the trip were survived within the favorable salinity range but that the species tolerate only for a few weeks the unfavorable salinity range. This functions as a barrier for dispersal. However, at faster and more frequent shipping in the future salinity can become no longer very important as a dispersal barrier.

Highlights

  • Dispersal enables species to colonize suitable habitats in new areas and escape potential deteriorating conditions in 147 Page 2 of 13Mar Biol (2016) 163:147 their present habitat (Cain et al 2000; Holt 2003; Lester et al 2007)

  • All mussels died within 14 days of initial exposure with the exception of M. edulis (23–30 days)

  • M. edulis was collected from the North Sea, on the outside of sluices near Velsen, M. leucophaeata was collected inside the sluices in the North Sea Canal and D. polymorpha

Read more

Summary

Introduction

Dispersal enables species to colonize suitable habitats in new areas and escape potential deteriorating conditions in 147 Page 2 of 13Mar Biol (2016) 163:147 their present habitat (Cain et al 2000; Holt 2003; Lester et al 2007). Unfavorable water quality conditions such as too high or too low salinity levels for survival can prevent aquatic species to disperse and establish. Sea straits and oceans can act as barriers for long-distance dispersal of freshwater species while rivers can be barriers for marine species when they are not tolerant for fresh water. These barriers are nowadays partly lifted by the high frequency and speed of seagoing ships and river vessels by which the chances for hitchhiking invasive species to survive the trip are very much increased as the period of exposure to unfavorable conditions decreased. A number of species of Dreissenidae and Mytilidae, which are known to spread in this way, are very successful invaders (Nalepa and Schloesser 1993; Van der Velde et al 2010a; Nalepa and Schloesser 2013; Matthews et al 2014)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.