Abstract

`Tifblue' and `Brightwell' rabbiteye blueberries (Vaccinium ashei Reade.) were subjected to 0, 25, or 100 mM Na+, as Na2SO4 or NaCl, and 0, 1, 3, or 10 mM supplemental Ca2+, primarily as CaSO4, in an irrigated sand culture in the greenhouse. Additionally, the effect of NaCl on `Sharpblue' southern highbush blueberry (primarily V. corymbosum L.) was examined. For unsalinized plants, fastest growth occurred in plants not receiving supplemental Ca2+. Root and shoot growth were depressed as salinity increased in plants lacking additional Ca2+. With 100 mM Na+ as Na2SO4. `Tifblue' root and shoot dry weight increases were only 37% and 25%, respectively, of the increase of unsalinized controls, while with 100 mM Na+ as NaCl, the corresponding shoot and root dry weight increases were only 38% and 43%, respectively. `Brightwell' plants reacted similarly to `Tifblue' in salinity treatments with Na2SO4 and NaCl, but `Sharpblue' plants were more severely affected by 100 mM NaCl than were the rabbiteye cultivars. In no case did addition of Ca2+ have any ameliorative effect on either the dry weight of roots of plants exposed to 25 or 100 mM NaCl or on the shoot growth of plants exposed to NaCl. The inability of Ca2+ to counter Cl- entry or toxicity may account for the lack of amelioration. In contrast, additional Ca2+ did improve shoot growth of plants exposed to Na2SO4. For `Tifblue' plants supplied with 25 mM Na+ as Na2SO4, growth increased by almost 25% in the presence of 10 mM Ca2+, while for `Tifblue' plants treated with 100 mM Na+ as Na2SO4, growth was more than three times greater in plants supplied with 1 mM Ca than in those not given any Ca2+. Growth increase was primarily due to increased leaf area and number. Low (1 mM) concentrations of Ca2+ were more effective in ameliorating the effects of 100 mM Na+ as Na2SO4 than were 3- and 10-mM Ca2+ supplements, possibly because higher Ca2+ additions lead to metabolic damage in these calcifuge Vaccinium species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.