Abstract

Plant productivity is central to numerous ecosystem functions in tidal wetlands. We examined how productivity of brackish marsh plants in northern California responded to abiotic stress gradients of inundation and salinity using two experimental approaches. In a greenhouse study with varying salinity, shoot production and biomass of Juncus balticus, Schoenoplectus acutus and S. americanus all declined monotonically with higher salinity, with evidence of differences in sensitivity among species by their varied functional responses. Salinity also negatively affected fecundity for the one species (S. americanus) that produced enough inflorescences during the experiment for analysis. In a field manipulation of inundation and initial pore water salinity, total end-of-season biomass and other metrics of growth in the high marsh species, J. balticus, had unimodal relationships with inundation. Root production tended to be greater strongly impacted by greater inundation than shoot production. The salinity treatment quickly dissipated for treatments that were flooded more frequently but persisted at a higher marsh elevation where it suppressed plant growth. These results suggest that both increased flooding and salinity associated with climate change and sea-level rise may negatively impact productivity of brackish marsh species, but with variable effects by species and stressor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.