Abstract

Anaerobic ammonium oxidation (anammox) combined with partial-denitrification (NO3- → NO2-) is an innovative process for the simultaneous removal of ammonia and nitrate from wastewaters. An efficient method for the selection of partial denitrifying community, which relies on increasing influent salinity, is described. Using this method, a denitratating community was enriched, which showed a nitrite accumulation efficiency higher than 75% as well as a high nitrate conversion efficiency. Community analysis using 16S rDNA indicated that Halomonas became the dominant genus as salinity increased. Metagenomic analysis revealed that there was not a significant difference in reads mapping to downstream denitrification genes in a comparison of samples from cultures with 5% salinity to those without salinity. The majority of the reads mapping to the genes encoding dissimilatory nitrate and nitrite reductases nar and nirS came from Halomonas under high salinity conditions. Two metagenome-assembled genomes taxonomically assigned to Halomonas were obtained, one of which accounted for ∼35% of the reads under high salinity conditions. Both genomes harbored the genes for the complete denitrification pathway. These results indicate progressive onset denitrifiers, a phenotype where nitrite reduction only occurs after nitrate exhaustion, could be successfully enriched with increasing salinity. Progressive onset denitrifiers may be more widespread in natural and artificial habitats than anticipated and are shown here to be valuable for nitrogen mitigating processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call