Abstract

Two halophilic archaeal strains, ZS-10T and GSL13T, were isolated from the Zhoushan marine saltern in Zhejiang, and an inland saline soil from the Tarim Basin, Xinjiang, PR China, respectively. The cells of strain ZS-10T were pleomorphic while those of strain GSL13T were rod-shaped. Both of them stained Gram-negative and formed red-pigmented colonies on agar plates and their cells lysed in distilled water. The optimum growth of strain ZS-10T was observed at 40 °C, 3.4 M NaCl, 0.03 M MgCl2 and pH 7.5, while that of strain GSL13T was at 37 °C, 3.1 M NaCl, 0.5 M MgCl2 and pH 7.5. Phylogenetic and phylogenomic analyses indicated that these two strains were related to Salinigranum and Halohasta, respectively. Strains ZS-10T and GSL13T could be differentiated from the current members of Salinigranum and Halohasta based on the comparison of diverse phenotypic characteristics. The average amino acid identity, average nucleotide identity and digital DNA-DNA hybridization values among strain ZS-10T and current species of Salinigranum were 75.8-78.6 %, 80.6-81.9 % and 24.3-26.1 %, respectively. These values between strain GSL13T and current species of Halohasta were 78.4-80.8 %, 79.8-82.8% and 22.7-25.7 %, respectively, clearly below the threshold values for species demarcation. The polar lipids of strain ZS-10T were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and sulphated mannosyl glucosyl diether (S-DGD-1), while those of strain GSL13T were phosphatidic acid, PG, PGP-Me, phosphatidylglycerol sulphate and S-DGD-1. The polar lipid profile of strain GSL13T was identical to those of Halohasta, whereas strain ZS-10T did not contain the minor glycolipids detected in the current Salinigranum species. The phenotypic, phylogenetic and genome-based results suggested that strains ZS-10T (=CGMCC 1.12868T=JCM 30241T) and GSL13T (=CGMCC 1.15214T=JCM 30841T) represent two novel species, for which the names Salinigranum marinum sp. nov. and Halohasta salina sp. nov. are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call