Abstract
Graph-based salient object detection methods have gained more and more attention recently. However, existing works fail to separate effectively salient object and background in some challenging scenes. Inspired by this observation, we propose an effective salient object detection method based on a novel boundary-guided graph structure. More specifically, the input image is firstly segmented into a series of superpixels. Then we integrate two prior cues to generate the coarse saliency map, a novel weighting mechanism is proposed to balance the proportion of two prior cues according to their performance. Secondly, we propose a novel boundary-guided graph structure to explore deeply the intrinsic relevance between superpixels. Based on the proposed graph structure, an iterative propagation mechanism is constructed to refine the coarse saliency map. Experimental results on four datasets show adequately the superiority of the proposed method than other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.