Abstract
Salient object detection for RGB-D images aims to utilize color and depth information to automatically localize objects of human interest in the scene and reduce the complexity of visual analysis. Different from existing saliency detection model with double-stream network, salient object detection by Single Stream Recurrent Convolution Neural Network(SSRCNN) is proposed. First RGBD four-channels input is fed into VGG-16 net to generate multiple level features which express the most original feature for RGB-D image. The coarse saliency map from the deepest features can detect and localize salient objects, but loss the boundaries and subtle structures. So Depth Recurrent Convolution Neural Network (DRCNN) is then applied to each level feature for rendering salient object outline from deep to shallow hierarchically and progressively. With the help of deeper level feature, original depth cue and coarse saliency map, each level feature can accurately predict the salient objects in different scales. At last all the saliency maps from each level are fused together to generate final results. Extensive quantitative and qualitative experimental evaluations on four dataset demonstrate that the proposed method outperforms most state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.