Abstract

The detection range of underwater laser imaging technology achieves 4—6 times of detection range of conventional camera in intervening water medium, which makes it very promising in oceanic research, deep sea exploration and robotic works. However, the special features in underwater laser images, such as speckle noise and non-uniform illumination, bring great difficulty for image segmentation. In this paper, a novel saliency motivated pulse coupled neural network (SM-PCNN) is proposed for underwater laser image segmentation. The pixel saliency is used as external stimulus of neurons. For improvement of convergence speed to optimal segmentation, a gradient descent method based on maximum two-dimensional Renyi entropy criterion is utilized to determine the dynamic threshold. On the basis of region contrast in each iteration step, the real object regions are effectively distinguished, and the robustness against speckle noise and non-uniform illumination is improved by region selection. The proposed method is compared with four other state-of-the-art methods which are watershed, fuzzy C-means, meanshift and normalized cut methods. Experimental results demonstrate the superiority of our proposed method to allow more accurate segmentation and higher robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.