Abstract
BackgroundBone disease causes short-term or long-term physical pain and disability. It is necessary to explore new drug for bone-related disease. This study aimed to explore the role and mechanism of Salidroside in promoting osteogenic differentiation of adipose-derived stromal cells (ADSCs).MethodsADSCs were isolated and treated with different dose of Salidroside. Cell count kit-8 (CCK-8) assay was performed to assess the cell viability of ADSCs. Then, ALP and ARS staining were conducted to assess the early and late osteogenic capacity of ADSCs, respectively.Then, differentially expressed genes were obtained by R software. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed genes were further analyzed. The expression of OCN, COL1A1, RUNX2, WNT3A, and β-catenin were measured by real-time PCR and Western blot analysis. Last, β-catenin was silenced by small interfering RNA.ResultsSalidroside significantly increased the ADSCs viability at a dose-response manner. Moreover, Salidroside enhanced osteogenic capacity of ADSCs, which are identified by enhanced ALP activity and calcium deposition. A total of 543 differentially expressed genes were identified between normal and Salidroside-treated ADSCs. Among these differentially expressed genes, 345 genes were upregulated and 198 genes were downregulated. Differentially expressed genes enriched in the Wnt/β-catenin signaling pathway. Western blot assay indicated that Salidroside enhanced the WNT3A and β-catenin expression. Silencing β-catenin partially reversed the promotion effects of Salidroside. PCR and Western blot results further confirmed these results.ConclusionSalidroside promoted osteogenic differentiation of ADSCs through Wnt/β-catenin signaling pathway.
Highlights
Bone disease causes short-term or long-term physical pain and disability
Salidroside enhanced cell viability of adipose-derived stromal cells (ADSCs) 2D structure of Salidroside can be seen in Supplement S1
Salidroside enhanced osteogenic differentiation of ADSCs In order to assess the role of Salidroside in promoting osteogenic differentiation of ADSCs, ALP, and ARS were performed to assess the early and late osteogenic capacity, respectively
Summary
It is necessary to explore new drug for bone-related disease. This study aimed to explore the role and mechanism of Salidroside in promoting osteogenic differentiation of adipose-derived stromal cells (ADSCs). Drugs for the treatment of osteoporosis can be aimed at promoting osteoblastic bone formation or inhibiting osteoclasts [5]. Salidroside (SR) is a main component of Rhodiola rosea L. and exhibits a variety of pharmacologic properties, including anti-inflammatory, anti-fatigue and anti-oxidant properties, anti-apoptosis, and hypoglycemic effects. Zhang et al [9] revealed that salidroside has protective effects against Abeta (25-35)-induced oxidative stress, which might be a potential therapeutic agent for treating or preventing neurodegenerative diseases. Studies have shown that a variety of natural compounds can affect the differentiation of osteoblasts [10]. Whether SR could promote bone formation is not yet known
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.