Abstract

Introduction: This study aimed to explore the effects and mechanisms of salidroside (SAL) in airway inflammation in asthmatic mice. Methods: Mice were sensitized with ovalbumin (OVA) to establish an asthma model. They were divided into the control group, OVA group, SAL low-dose group (SAL-L), SAL high-dose group (SAL-H), and dexamethasone (DXM) group. The airway reactivity of the mice was measured, and the total cells, neutrophils, eosinophils, and lymphocytes were counted, respectively. The levels of IL-4, IL-5, IL-13, and IFN-γ in bronchoalveolar lavage fluid (BALF) were detected by ELISA. Immunohistochemistry was used to detect the expression levels of p-AMPK, p-Akt, and p-GSK3β. Western blot was used to detect cytokine levels in lung tissue and p-AMPK, p-Akt, and p-GSK3β levels in LPS-induced 16HBE cells. Results: The airway hyperresponsiveness of asthmatic mice in the SAL-H group decreased (p < 0.05), and the total number of cells, neutrophils, eosinophils, and lymphocytes decreased significantly (p < 0.05). In addition, the airways of mice showed airway inflammatory infiltration and goblet cell proliferation, and the corresponding cellular inflammatory factors IL-4, IL-5, and IL-13 were significantly decreased. However, the expression of IFN-γ in BALF and lung tissues was increased (p < 0.05). Moreover, after the mice were treated with SAL, the phosphorylation level of AMPK was significantly increased, which further reduced the phosphorylation levels of Akt and GSK3β (p < 0.05). Both SAL and AMPK inhibitors exerted effects on LPS-induced 16HBE cells, consistent with in vivo results. Conclusion: SAL can inhibit bronchial hyperresponsiveness and reduce tracheal inflammation by increasing AMPK phosphorylation and inhibiting Akt and GSK3β signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call