Abstract

The proliferation of pulmonary artery smooth muscle cells (PASMCs) contributes to the development of pulmonary vascular remodeling, ultimately leading to pulmonary hypertension. In this study, the effects and molecular mechanisms of salidroside on the platelet‑derived growth factor (PDGF)‑BB‑induced proliferation of primary cultured rat PASMCs were investigated. The presented data demonstrated that salidroside significantly inhibited the proliferation and DNA synthesis of PASMCs induced by PDGF‑BB in a dose‑ and time‑dependent manner, without cell cytotoxicity. In accordance with these findings, salidroside blocked progression through G0/G1 to S phase of the cell cycle. The salidroside‑induced inhibition of the cell cycle was associated with the inhibition of cyclinD1, cyclinE, cyclin‑dependent kinase2 (CDK2) and CDK4 mRNA expression, as well as an increase in the mRNA expression of p27 in PDGF‑BB‑stimulated PASMCs. Further experiments showed that the beneficial effect of salidroside on blocking the proliferation of PASMCs was associated with the suppression of the AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway, but did not involve the extracellular signal‑regulated kinase1/2, p38 and c‑Jun‑N‑terminal kinase signaling pathways. These results indicate that salidroside suppresses PDGF‑BB‑induced PASMC proliferation through the AKT/GSK3β signaling pathway and suggests that it may be a feasible therapy for pulmonary vascular remodeling diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call