Abstract

BackgroundOur previous studies have shown that salidroside (Sal) exerted a protective effect in severe acute pancreatitis (SAP) via inhibiting the inflammatory response. However, the molecular mechanism has not been fully elucidated. MethodsUsing SAP rat model and miRNA microarray, the effect of Sal on miRNA expression profiling was determined and then validated their changes by quantitative Real-time PCR (qRT-PCR). Then, SAP cell model, enzyme-linked immunosorbent assay (ELISA) and Cell Counting Kit-8 (CCK-8) assay were used to explore the biological function of miR-217-5p in vitro. Bioinformatics analysis, luciferase reporter assay and miRNA pulldown assay were performed to investigate the underlying mechanism of miR-217-5p in the protection of Sal against SAP. ResultsCompared with SAP group, 21 differentially expressed miRNAs were identified in SAP + Sal group. The target genes of these miRNAs were strongly associated with regulation of transcription, Axon guidance, Pathways in cancer and MAPK signaling pathway. Among these miRNAs, miR-217-5p was the most downregulated miRNA. Sal treatment alleviated cell injury and reduced the production of pro-inflammatory cytokines. Whereas overexpression of miR-217-5p reversed the effects of Sal. We identified YY1 associated factor 2 (YAF2) as a direct target gene of miR-217-5p and Sal treatment could upregulate YAF2 expression via targeting miR-217-5p. Furthermore, knockdown of YAF2 counteracted Sal-induced alleviation of cell injury and inflammation. Moreover, Sal could suppress the activation of p38 MAPK pathway by regulating miR-217-5p/YAF2 axis. ConclusionsOur findings for the first time highlighted that Sal alleviated pancreatic injury and inhibited inflammation by regulating miR-217-5p/YAF2 axis, which might provide new therapeutic strategies for SAP treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call