Abstract

NASH is becoming a leading cause of liver cirrhosis and HCC. Salidroside (p-hydroxyphenethyl-β-D-glucoside; SAL) has various biological and pharmacological activities, including anti-inflammatory, -oxidant, and -cancer activities. However, the therapeutic effect and underlying molecular mechanism of SAL in NASH remain to be further clarified. In this study, we found that SAL alleviated lipid accumulation and inflammatory response in primary hepatocytes after palmitic acid/oleic acid (PO) stimulation. In addition, SAL effectively prevented high-fat/high-cholesterol (HFHC)-diet-induced NASH progression by regulating glucose metabolism dysregulation, insulin resistance, lipid accumulation, inflammation, and fibrosis. Mechanistically, integrated RNA-sequencing and bioinformatic analysis showed that SAL promoted AMPK-signaling pathway activation in vitro and in vivo, and this finding was further verified by determining the phosphorylation levels of AMPK. Furthermore, the protective effects of SAL on lipid accumulation and inflammation in hepatocytes and livers induced by PO or HFHC stimulation were blocked by AMPK interruption. Our studies demonstrate that SAL protects against metabolic-stress-induced NASH progression through activation of AMPK signaling, indicating that SAL could be a potential drug component for NASH therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call