Abstract

Salicylic acid (SA) plays a critical role in plant immunity responses against pathogen infection, especially in the establishment of systemic acquired resistance. Whether other forms of salicylates also function in plant immunity has not been explored. Our previous study has revealed that salicyloyl-aspartate (SA-Asp), the only reported endogenous SA-amino acid conjugate in plants, was highly accumulated in the Arabidopsis activation-tagged mutant gh3.5-1D after pathogen infection. In this study, we dissected SA-Asp production in Arabidopsis. In vitro biochemical experiments showed that the GH3.5 protein could catalyze the conjugation of SA with aspartic acid to form SA-Asp. SA-Asp is not converted into free SA and likely acts as a mobile molecule in plants. SA-Asp could induce pathogenesis-related (PR) gene expression and increase disease resistance to pathogenic Pseudomonas syringae. Our current study also supports the notion that GH3.5 is a multifunction enzyme in plant hormone metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.