Abstract
The interactive effect of salicylic acid and sodium chloride (NaCl) salinity on wheat (Triticum aestivum L.) cv. ‘Inqlab’ (salt‐sensitive) and cv. ‘S‐24’ (salt‐tolerant) was studied in a sand‐culture pot experiment in a net house. Wheat seeds soaked in water and 100 ppm salicylic acid solution for 6 h were sown in sand salinized with 0, 50, and 100 mM NaCl. Pots were irrigated with quarter‐strength Hoagland's nutrient solution. Fourteen‐day‐old seedlings were harvested, and growth parameters (leaf and root length, leaf and root dry weight) were recorded. Chlorophyll a and b content; soluble sugar (reducing, nonreducing, and total sugars) content; nitrate (NR) and nitrite reductase activity (NiR); soluble proteins, and total soluble amino acid content of fresh leaves were determined. Sodium chloride salinity significantly reduced growth parameters. Salicylic acid treatment alleviated the adverse salinity effect on growth. Salinity decreased the chlorophyll a and b content and chlorophyll a/b ratio in both varieties, but a decrease in the chlorophyll a/b ratio was less in salt‐tolerant wheat variety (‘S‐24’), which could be a useful marker for selecting a salt‐tolerant variety. Salinity (NaCl) stress considerably increased the accumulation of reducing sugars, nonreducing sugars, and total soluble sugars in leaves of 14‐day‐old wheat seedlings of both varieties. The salt‐tolerant variety (‘S‐24’) accumulated a higher sugar content, which also could be a useful marker for selecting a salt‐tolerant variety for slat‐affected areas. Salinity caused a reduction in nitrate reductase and nitrite reductase activity. The salt‐tolerant variety (‘S‐24’) showed resistance to a decrease of nitrate reductase activity under salinity. This could be a useful criterion for selecting salt‐tolerant varieties. In response to salinity, wheat seedlings accumulated soluble proteins and amino acids, which might reflect a salt‐protective mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.