Abstract
The phytohormone salicylic acid (SA) plays a crucial role in plant growth and development. However, the mechanism of high-concentration SA-affected gravitropic response in plant root growth and root hair development is still largely unclear. In this study, wild-type, pin2 mutant and various transgenic fluorescence marker lines of Arabidopsis thaliana were investigated to understand how root growth is affected by high SA treatment under gravitropic stress conditions. We found that exogenous SA application inhibited gravitropic root growth and root hair development in a dose-dependent manner. Further analyses using DIRECT REPEAT5 (DR5)-GFP, auxin sensor DII-VENUS, auxin efflux transporter PIN2-GFP, trans-Golgi network/early endosome (TGN/EE) clathrin-light-chain 2 (CLC2)-mCherry and prevacuolar compartment (PVC) (Rha1)-mCherry transgenic marker lines demonstrated that high SA treatment severely affected auxin accumulation, root-specific PIN2 distribution and PIN2 gene transcription and promoted the vacuolar degradation of PIN2, possibly independent of clathrin-mediated endocytic protein trafficking. Our findings proposed a new underlying mechanism of SA-affected gravitropic root growth and root hair development via the regulation of PIN2 gene transcription and PIN2 protein endocytosis in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.