Abstract

Abstract The role of salicylic acid (0, 1 and 1.5 mM) on photosynthetic electron transfer chain of mung-bean plants grown under salt stress (0, 3, 6 and 9 dS/m2) was studied using chlorophyll a fluorescence (ChlF) measurements. Results indicated that accumulation of K+ content decreased but, Na+ content increased with increasing salt stress. SA-treated plants had more K+ and less Na+ content compared with the non-SA treated plants. Application of SA, especially with 1 mM, increased the I–P step of the OJIP transient curve of fluorescence. Salt stress decreased gs, CCI, FV, FM, SM and PIabs in plants. However, the time taken to reach FM (TFM) increased with increasing salt stress. Application of different concentrations of SA significantly improved gs, CCI, FV, SM, and PIabs of plants. Photosynthetic efficiency of plants improved as a result of SA application via decreasing Fo and increasing FV/FM, FV/Fo, SM/TFM and Area under both saline and non-saline conditions. Accumulation of Na+ had negative, but K+ had a positive correlation with gs, CCI and most of the chlorophyll a fluorescence parameters (except, Fo and TFM). A positive correlation was found between gS and CCI with PIabs. This research indicated that low gs under saline condition seems to cause losses in PSII efficiency, but the application of SA with 1 mM concentration is the best treatment for the alleviation of salt stress injuries on PSII activity of mung bean plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.