Abstract

Oilseed plant, Brassica napus L. seedlings grown in hydroponic condition with different concentrations of Pb were treated with salicylic acid (SA) to investigate the role of exogenous salicylic acid in alleviating lead toxicity on biochemical and physiological activities of the plant. The results showed that application of different concentrations of Pb increased soluble sugars and reduced carbohydrate levels significantly in roots and shoots of the plants. The stress induced by application of Pb triggered significant inhibitory effects on growth and chlorophyll synthesis induced on the production of protein and proline and enhanced the levels of antioxidant activity. Salicylic acid (SA) treated plants showed alleviation increasing total dry mass, leaf area, shoot and root length as well as leaf total chlorophyll content in responses to Pb stress. Results revealed the importance of salicylic acid (SA) activity in enabling plants to reduce the soluble sugars and increase of insoluble sugar in heavy -metal-stressed plants. The content of proline and proteins were also reduced in plants were treated with salicylic acid. Our data provide evidence that salicylic acid treatment decreased the activity of antioxidant enzymes in plants were exposed to different levels of Pb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call