Abstract
We use graphs to define sets of Salem and Pisot numbers and prove that the union of these sets is closed, supporting a conjecture of Boyd that the set of all Salem and Pisot numbers is closed. We find all trees that define Salem numbers. We show that for all integers n the smallest known element of the nth derived set of the set of Pisot numbers comes from a graph. We define the Mahler measure of a graph and find all graphs of Mahler measure less than ½ (1+√5). Finally, we list all small Salem numbers known to be definable using a graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.