Abstract

The advantages of massive multiple-input multiple-output (MIMO) techniques depend heavily on the accuracy of channel state information (CSI). In frequency division duplexing (FDD) massive MIMO systems, the user equipment (UE) needs to feed downlink CSI back to the base station (BS) through the feedback link. The excessive feedback overheads and low reconstruction accuracy are the main obstacles for actual deployment of FDD massive MIMO systems. In recent years, deep learning (DL) has been widely used to address the above problems. In this letter, we propose a neural network by utilizing the self-attention learning and dense refine (SALDR), which improves the accuracy of CSI feedback. Furthermore, a unified decoder named SALDR-U is designed to realize different compression ratios for CSI feedback without changing any parameter. Simulation results show that the proposed SALDR and SALDR-U outperform the state-of-the-art network in terms of accuracy and overhead of CSI feedback. The source code for all the experiments is available at GitHub.The code of this letter can be downloaded from GitHub link: <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/XS96/SALDR</uri> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.