Abstract
Recently, neural networks have been used as implicit representations for surface reconstruction, modelling, learning, and generation. So far, training neural networks to be implicit representations of surfaces required training data sampled from a ground-truth signed implicit functions such as signed distance or occupancy functions, which are notoriously hard to compute. In this paper we introduce Sign Agnostic Learning (SAL), a deep learning approach for learning implicit shape representations directly from raw, unsigned geometric data, such as point clouds and triangle soups. We have tested SAL on the challenging problem of surface reconstruction from an un-oriented point cloud, as well as end-to-end human shape space learning directly from raw scans dataset, and achieved state of the art reconstructions compared to current approaches. We believe SAL opens the door to many geometric deep learning applications with real-world data, alleviating the usual painstaking, often manual pre-process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.