Abstract

This paper presents SAILFISH, a scalable system for automatically finding state-inconsistency bugs in smart contracts. To make the analysis tractable, we introduce a hybrid approach that includes (i) a light-weight exploration phase that dramatically reduces the number of instructions to analyze, and (ii) a precise refinement phase based on symbolic evaluation guided by our novel value-summary analysis, which generates extra constraints to over-approximate the side effects of whole-program execution, thereby ensuring the precision of the symbolic evaluation. We developed a prototype of SAILFISH and evaluated its ability to detect two state-inconsistency flaws, viz., reentrancy and transaction order dependence (TOD) in Ethereum smart contracts. Our experiments demonstrate the efficiency of our hybrid approach as well as the benefit of the value summary analysis. In particular, we show that SAILFISH outperforms five state-of the-art smart contract analyzers (SECURIFY, MYTHRIL, OYENTE, SEREUM and VANDAL) in terms of performance, and precision. In total, SAILFISH discovered 47 previously unknown vulnerable smart contracts out of 89,853 smart contracts from ETHERSCAN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.