Abstract

Recently, computer aided diagnosis (CAD) model becomes an effective tool for decision making in healthcare sector. The advances in computer vision and artificial intelligence (AI) techniques have resulted in the effective design of CAD models, which enables to detection of the existence of diseases using various imaging modalities. Oral cancer (OC) has commonly occurred in head and neck globally. Earlier identification of OC enables to improve survival rate and reduce mortality rate. Therefore, the design of CAD model for OC detection and classification becomes essential. Therefore, this study introduces a novel Computer Aided Diagnosis for OC using Sailfish Optimization with Fusion based Classification (CADOC-SFOFC) model. The proposed CADOC-SFOFC model determines the existence of OC on the medical images. To accomplish this, a fusion based feature extraction process is carried out by the use of VGGNet-16 and Residual Network (ResNet) model. Besides, feature vectors are fused and passed into the extreme learning machine (ELM) model for classification process. Moreover, SFO algorithm is utilized for effective parameter selection of the ELM model, consequently resulting in enhanced performance. The experimental analysis of the CADOC-SFOFC model was tested on Kaggle dataset and the results reported the betterment of the CADOC-SFOFC model over the compared methods with maximum accuracy of 98.11%. Therefore, the CADOC-SFOFC model has maximum potential as an inexpensive and non-invasive tool which supports screening process and enhances the detection efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call