Abstract

Sails of a sailing yacht can be considered as multiple soft thin wings (membrane wings) with relative large cambers, and are often used at large attack angles. The shape of sail is determined as an equilibrium state of both aerodynamic force and tension acting on the sail surface. In particular, a spinnaker used for the running condition is a very soft membrane like a parachute, and the shape is simply formed by self-generated aerodynamic forces which are strongly affected by the sail shape itself. These facts lead to new challenges in the present problem, i.e., in the measurements the sail shape must be accurately measured in the flying condition, and in numerical simulation of flow and forces the sail flying shape is correctly given or predicted as a part of solution. The present study concerns the authors’ ongoing effort on analyses of sail performance of sailing yachts by numerical calculations and experiments, and in this paper, the focus of discussions is more on the former. Two computational fluid dynamics (CFD) methods are used in the present study, and the results are validated through detailed comparison with experimental data. The data are obtained in onboard full-scale measurements by using a sail dynamometer boat. Our study concerns both the upwind and downwind sailing conditions; however, we focus on the former in the present chapter due to the limitation of space in this book. More detailed background of the present work is well described in Masuyama et al. (2009). One of the two CFD methods is a Vortex Lattice method (VLM). Although the VLM is a potential flow calculation, it is well known the results agree well with the measured data at the upwind condition of small attack angle. The VLM is used as the sail design and making tool due to the quick convergence ability for the parametric survey of sail shape to obtain the desired sail performance, and also due to good compatibility with the finite element method (FEM) for the strength analysis. In this paper, a method to shed wake vortices stepby-step developed by Fukasawa was adopted in the Vortex Lattice method (Fukasawa, 1993; Fukasawa & Katori, 1993). Another CFD method is a Multiblock Reynolds-Averaged Navier-Stokes (RANS)-based CFD named “FLOWPACK”. This code was developed by Tahara specifically for CFD education and research, and design applications for ship hydrodynamics, aerodynamics, and fluid engineering (Tahara, 2008). As part of the developments for application to design problems, a complete multiblock domain decomposition feature was included. The numerical method of FLOWPACK solves the unsteady RANS and continuity equations for mean velocity and pressure. Either a zero or a two-equation turbulence model can be used for turbulence flow calculation, and in the present study the former was used. The FLOWPACK was included as a

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call