Abstract

BackgroundLong-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, however, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems. These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal (“ballooning”) using spun silk lines. Individuals are strictly terrestrial, are not thought to tolerate landing on water, and have no control over where they land once airborne. Their tendency to spread via aerial dispersal has thus been thought to be limited by the costs of encountering water, which is a frequent hazard in the landscape.ResultsIn our study we find that ballooning in a subset of individuals from two groups of widely-distributed and phylogenetically distinct terrestrial spiders (linyphiids and one tetragnathid) is associated with a hitherto undescribed ability of those same individuals to survive encounters with both fresh and marine water. Individuals that showed a high tendency to adopt ‘ballooning’ behaviour adopted elaborate postures to seemingly take advantage of the wind current whilst on the water surface.ConclusionsThe ability of individuals capable of long-distance aerial dispersal to survive encounters with water allows them to disperse repeatedly, thereby increasing the pace and spatial scale over which they can spread and subsequently exert an influence on the ecosystems into which they migrate. The potential for genetic connectivity between populations, which can influence the rate of localized adaptation, thus exists over much larger geographic scales than previously thought. Newly available habitat may be particularly influenced given the degree of ecosystem disturbance that is known to follow new predator introductions.

Highlights

  • Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion

  • We show that (i) many of these common spider species have individuals that can ‘sail’ on water using wind power alone, and (ii) the ability to sail is tightly associated with tendency for airborne dispersal in this group of terrestrial spiders

  • Our data indicate that, in contrast to the previously accepted view, long-distance dispersal of the spiders in our study is not limited by selection to avoid encounters with water because individuals display behavioural adaptations that allow them to survive encounters with aquatic

Read more

Summary

Introduction

Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal (“ballooning”) using spun silk lines. We show that (i) many of these common spider species have individuals that can ‘sail’ on water using wind power alone (both in turbulent, still, fresh, and salt water conditions), and (ii) the ability to sail is tightly associated with tendency for airborne dispersal in this group of terrestrial spiders.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call