Abstract

Alzheimer's disease (AD) is a typical neurodegenerative disease.Well-established studies have shown an elevated level of ROS (reactive oxygen species) that induces oxidative stress in AD.Saikosaponin-D exhibited significant therapeutic effects on neurodegenerative diseases. However, its in-depth molecular mechanisms against neurotoxicity remain not fully uncovered.Herein, the possible protective effects of saikosaponin-D on glutamate-induced neurotoxicity in SH-SY5Y cells and the underlying mechanism were elucidated. Saikosaponin-D pretreatment could ameliorate glutamate-induced cytotoxicity according to MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and depress apoptosis according to Hoechst 33,342 staining and Annexin V-FITC/PI double staining in SH-SY5Y cells. Additionally, saikosaponin-D administration suppressed oxidative stress in response to glutamate indicated by diminished intracellular ROS formation and reduced MDA (malondialdehyde) content in SH-SY5Y cells. These phenomena, appeared to correlate with the recovered cellular antioxidant enzyme activities and inducted HO-1 (heme oxygenase-1) expression accompanying the nuclear translocation of Nrf2 conduct by saikosaponin-D preconditioning which had been altered by glutamate, were correlated with its neuroprotective. Furthermore, addition of LY294002, a selective inhibitor of PI3K (phosphatidylinositol 3 kinase), blocked saikosaponin-D-caused Nrf2 nuclear translocation and reversed the protection of saikosaponin-D against glutamate in SH-SY5Y cells. Moreover, saikosaponin-D exhibited antioxidant potential with high free radical-scavenging activity as confirmed by a DPPH (2,2-diphenyl-1-picrylhydrazyl) and TEAC (Trolox equivalent antioxidant capacity) in a cell-free system in vitro. Taken together, our results indicated that saikosaponin-D enhanced cellular antioxidant capacity through not only intrinsic free radical-scavenging activity but also induction of endogenous antioxidant enzyme activities and HO-1 expression mediated, at least in part, by activating PI3K and subsequently Nrf2 nuclear translocation, thereby protecting the SH-SY5Y cells from glutamate-induced oxidative cytotoxicity. In concert, these data raise the possibility that saikosaponin-D may be an attractive candidate for prevention and treatment of AD and other diseases related to oxidation in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.