Abstract
An integrated laser is a key component in silicon based photonic integrated circuits. Beyond incorporating the gain medium, on-chip cavity design is critical to device performance and yield. Typical recent results involve cavities utilizing distributed Bragg gratings that require ultra-fine feature sizes. We propose to build laser cavity on silicon using a Sagnac loop mirror and a micro-ring wavelength filter for the first time. The Sagnac loop mirror provides broadband reflection, which is simple to fabricate, has an accurately-controlled reflectivity, and negligible excess loss. Single-mode operation is achieved with the intra-cavity micro-ring filter and, using a 248 nm stepper, the laser wavelength can be lithographically controlled within a standard deviation of 3.6 nm. We demonstrate a proof-of-concept device lasing at 1551.7 nm, with 44 dB SMSR, 1.2 MHz linewidth and 4.8 mW on-chip output power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.