Abstract
The advantages of light and matter-wave Sagnac interferometers--large area on one hand and high rotational sensitivity per unit area on the other--can be combined utilizing ultraslow light in cold atomic gases. While a group-velocity reduction alone does not affect the Sagnac phase shift, the associated momentum transfer from light to atoms generates a coherent matter-wave component which gives rise to a substantially enhanced rotational signal. It is shown that matter-wave sensitivity in a large-area interferometer can be achieved if an optically dense vapor at subrecoil temperatures is used. Already a noticeable enhancement of the Sagnac phase shift is possible, however, with far fewer cooling requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.