Abstract

We introduce a time-resolved magneto-optical measurement technique based on a zero-area Sagnac interferometer. By replacing a continuous wave light source to a pulsed one, temporal resolution of hundreds of picoseconds is achieved. Because two lights passing through a Sagnac loop always travel the same optical path length, the interference from the phase modulation and Kerr rotation occurs in a pulse mode. For illustration of the apparatus, we present ferromagnetic resonance of a Permalloy film caused by a magnetic field pump. The instrument still possesses the favorable properties of a Sagnac interferometer, such as rejection of all the reciprocal effects, and shows 1μrad/Hz sensitivity at a 3µW optical power in the pulse mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call