Abstract

Ethnopharmacological relevanceThe Sagittaria sagittifolia L. polysaccharide (SSP) is a purified form of a homogeneous polysaccharide isolated from the root tubers of S. sagittifolia, which has been used as a protectant against hepatotoxicity induced by coadministration of isoniazid and rifampicin. However, the protective effect of SSP against isoniazid- and rifampicin-induced liver injury has never been studied. Aim of the studyIn this study, the hepatoprotective effect of SSP and its underlying mechanism were investigated in mice with isoniazid- and rifampicin-induced liver injury. Materials and methodsLiver injury was induced in mice by intragastric administration of isoniazid and rifampicin, and the mice were divided into the following six groups: standard control (administration of saline by gavage), model (intragastric administration of isoniazid and rifampicin at 100 mg/kg/day each), positive control (100 mg/kg/day silymarin by gavage 4 h after isoniazid and rifampicin administration), and SSP-treated (200, 400, or 800 mg/kg/day SSP by gavage after isoniazid and rifampicin administration). Subsequently, blood and liver samples were collected from all the animals and were assessed. ResultsSSP significantly alleviated the liver injury, as evidenced by decreased activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase in the serum and a decreased level of malondialdehyde in the liver, as well as by an increased level of glutathione and increased activities of superoxide dismutase and catalase in the liver. SSP also effectively reduced the pathological tissue damage. The gene and protein expression of cytochrome P450 (CYP) 2E1 and CYP3A4 was inhibited by SSP. The gene and protein expression of nuclear factor erythroid 2-related factor 2 (NRF2), glutamate-cysteine ligase, and heme oxygenase-1 were induced by SSP, whereas that of Kelch-like ECH-associated protein 1 was inhibited. ConclusionsSSP exerts a protective effect against isoniazid- and rifampicin-induced liver injury in mice. The underlying mechanisms may involve activation of NRF2 and its target antioxidant enzymes and inhibition of the expression of CYPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call