Abstract

Encephalo-myo-synangiosis (EMS) is an effective revascularization procedure for the treatment of moyamoya disease (MMD). However, the temporalis muscle used for EMS sometimes swells and causes ischemic complications by compressing the underlying brain. This study aimed to elucidate the effect of sagittal splitting (SS) of the muscle for prevention of ischemic complications and its impact on the postoperative development of collateral vessels. In this historical case-control study, we analyzed 60 hemispheres in adult patients with MMD who underwent EMS using the temporalis muscle from December 1998 to November 2017. The muscle was divided anteroposteriorly by coronal splitting, and the anterior, posterior, or both parts of the muscle were used for EMS in 17, 4, and 39 hemispheres, respectively. In cases performed after 2006, the muscle was halved by SS, and the medial half was used for EMS to reduce the muscle volume (n = 47). The degree of postoperative muscle swelling was evaluated by measuring the maximum thickness of the muscle on CT scans obtained 3 to 7 days after surgery. The collateral developments of the anterior deep temporal artery (aDTA), posterior deep temporal artery (pDTA), and middle temporal artery (MTA) were assessed using digital subtraction angiography and MR angiography performed 6 months or more after surgery. SS significantly reduced the temporalis muscle thickness from 12.1 ± 5.0 mm to 7.1 ± 3.0 mm (p < 0.01). Neurological deterioration due to the swollen temporalis muscle developed in 4 of the 13 hemispheres without SS (cerebral infarction in 1, reversible neurological deficit in 2, and convulsion in 1) but in none with SS. There were no significant differences in the postoperative collateral developments of the aDTA, pDTA, and MTA between hemispheres with and without SS. The MTA more frequently developed in hemispheres with EMS in which the posterior part of the muscle was used (30/37) than those in which this part was not used (4/16) (p < 0.01). SS of the temporalis muscle might prevent neurological deterioration caused by the swollen temporalis muscle by reducing its volume without inhibiting the development of the collateral vessels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call