Abstract

In budding yeast, growth through fermentation and/or respiration is dependent on the type of carbon source present in the medium. SAGA complex is the main acetylation complex and is required, together with Rtg factors, for nucleus-mitochondria communication and transcriptional activation of specific nuclear genes. Even though acetylation is necessary for mitochondria activity and respiratory pathways the direct role of histone acetyltransferases and SAGA complex has never been investigated directly. In this study we demonstrate, for the first time, that Gcn5 and SAGA are needed for respiratory metabolism and oxygen consumption. According to a central role for acetylation in respiration we find that the Gcn5 inhibitor CPTH2 had higher efficacy on cells grown in glycerol containing media. We also demonstrated that the opposing activities of Gcn5 and Hda1 modify selectively H3-AcK18 and are essential for respiration. Taken together our results suggest a novel paradigm coupling acetyltransferase activity to respiratory metabolism. Correspondingly we propose the selective utilization of KAT inhibitor CPTH2, combined to the modulation of the respiratory metabolism of the cell, as a promising novel tool of intervention in cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.